
Efficient Component Based Software Engineering using the TCEM
Methodology and the TCET Tool

Santokh Singh, Cheung Ling Kelly Yu
Computer Science Dept, University of Auckland, Private Bag 92019, Auckland, New Zealand

{santokh@cs, cyu024@ec}.auckland.ac.nz

Abstract

Currently there are no comprehensive tools that can be
used to harness the full potential of Component Based
Software Engineering (CBSE). In this paper, we
describe a novel component-based software
development methodology, called the “Total
Component Engineering Methodology” (TCEM) that
we have conceived, formulated and tested that can be
efficiently and effectively applied to every phase of the
CBSE process. We also describe a novel and
comprehensive visual tool called the “Total
Component Engineering Tool” (TCET) which uses
enhanced visual notations and features to efficiently
support our new development methodology. This novel
tool and methodology complement each other and can
be used to produce high-quality component based
software that is highly understandable, scalable,
maintainable and reusable.

1. Introduction

Complex and compound software systems that
carry out sophisticated tasks are currently becoming
increasingly important, useful and popular. However
the development of such software systems has become
increasingly difficult to control, costly to manage and
hard to understand and refactor [1]. Current
Component Based Software Development (CBSD)
techniques still cannot address all these problems
though they have been advocated as possible solutions
to the design, development, management and control
of such systems [2]. No total CBSD methodology
currently exists can be utilized to identify and reuse
systemic components starting from the initial phase of
Requirements Engineering itself and stretching beyond
the delivery, deployment and maintenance stages.
Moreover there is a clear lack of comprehensive visual
tools to support this type of total component-oriented
software development life cycle, i.e. one that totally,

efficiently and effectively support the development in
all phases of the SDLC using components.

2. Motivation

Software components are becoming more and

more popular in software development because they
modularize the code more effectively, are more
understandable and allow for better reuse of code
compared to the methodologies that do not use
components in development [16]. However all the
methodologies so far only focus on certain phases or
specific areas in the component-oriented software
development process. Also there is a clear lack of
comprehensive visual tools to support a total
component oriented software development life cycle,
i.e. tools that totally, efficiently and effectively support
the development in all phases of the SDLC using
informative visual notations and components.

A number of Component-Based Software System
(CBSS) development methodologies, including COMO
[3], Catalysis [4], AECM [5] and KobrA [6], provide
processes and notations to support CBSD. However,
coding the software components without informative
visual notations or comprehensive auto-code
generation can be tedious and difficult. Using our tool,
for instance, automatic code generation can be
achieved because we use an informative Visual
Language [7]. It is wasteful for software
engineers/computer scientists to do things that
machines can do automatically. The software
engineers/computer scientists can focus more on
refining the business logic and introducing new ideas
and concepts rather than wasting time on the coding of
syntax or reinventing the wheel like rewriting
commonly used or existing code e.g. for persistency or
security purposes. Also, if we were to use meaningful
visual languages, including rich drag and drop
features, users can design, develop and refactor
software components and systems more easily, more
accurately and faster.

Without proper development tools and visual
notations to depict the software components in
Component-Base Software Systems (CBSS), the
designs can easily become disordered and
disorganized, and this is more glaring if the system is
very large like enterprise systems. Therefore, we are
motivated and convinced that it is truly necessary and
beneficial to have both a comprehensive methodology
that can be used in all the phases of Component Based
Software Development and an excellent Component-
Based Software Engineering visual tool to support this
methodology.

3. Background

Software components are blocks of code with
business logic and have interfaces to define its
functions. They can be encapsulated in different
standards but the same type of software components
should have the same architecture. The existing
technology of creating software component include
Microsoft® .NET or COM/COM+™ (Component
Object Model) [8], J2EE (Java™ 2 Platform Enterprise
Edition) or EJB (Enterprise JavaBeans™) [9], CORBA
[10].

Component based software development (CBSD)
approach is a concept that states that software systems
should be developed with the use of software
components [11]. Component based software systems
(CBSS) are developed by selecting appropriate
existing components [14] [15] or creating new ones to
satisfy certain systemic requirements and assembling
the software components into the architecture [17].
Current CBSD methodologies, e.g. COMO, Catalysis,
KobrA and AECM cannot identify and use software
components in all their SDLC phases, are not totally
comprehensive and do not have sufficient tool support.

4. Total Component Engineering
Methodology (TCEM)

The Total Component Engineering Methodology
(TCEM) is a new CBSE methodology that we have
conceived and developed to overcome the
shortcomings and limitations encountered in current
development methodologies. TCEM can be used to
rapidly, efficiently and effectively produce component
based software. This novel methodology can be used
to guide software developers to constructively reason
about how to identify, construct and deploy software
components in software systems starting from the first
phase in SDLC right to the end including deployment
and maintenance of software systems.

4.1 System’s Requirement Engineering with
TCEM
For the TC (Total Component) Software

Requirement Engineering phase (TCSRE) we
introduce a new concept called “Early Components”
(EC) in the requirement engineering phase. Currently
the early aspects concept has been used successfully
for the aspect-oriented software development. Rather
than just decide on the type of aspect early in the
development phase, we believe that it is a good idea to
identify and determine (if possible) the component,
during the early phases of TCSRE. The “Early
Components” (EC) concept requires developers to
identify any potentially useful software components
e.g. authentication component, in the use case diagram
of the CBSS during the requirement phase itself. By
applying the “EC” concept the overall view of the
software system become more visible and clearer even
in the early development stages.

4.2 Analysis and Design using TCEM

We introduce the very useful concept of a
Component Set (CS) here. A “component set” is a
composite component that has its own interface but the
functions of the component set is derived by calling
methods from other smaller components (see Figure
1).

Figure 1 The concept of a component set

As shown in figure 1 above, the component set
ABCD on the right provides four functions – colored
red, green, blue and orange. The component set ABCD
itself does not have the business logic of the four
functions, it resides in the supporting components
hidden behind the component set ABCD, and these
four components are shown on the left.

A component set is used by developers to manage
software components that are used within the
component-based software system. With the use of
component sets developers can manage the software
components more easily and efficiently and have a
clearer structure of the functions that they need while
blocking away unwanted functions in the components
but at the same time increasing component reusability.

4.3 Component based software system
implementation with TCEM
Currently code generation has become

increasingly popular in software development. A lot of
software tools and IDEs are able to generate code to
lower the implementation work load and reduce
development time. We have developed a code
generator in the TCET tool to generate both C# and
Java code. Most software tools’ code generators
currently can only generate skeleton code of the
software system. The aim of TCEM in its
implementation phase is to generate more useful code
for the developer instead of just skeleton code. We
have setup a database for developers to retrieve or
select a wide range of code, including business logic,
that can be inserted/deployed into software
components. We follow consistent and standardized
conventions for all the namespaces of the components,
interfaces and classes during the TCEM’s
implementation phase.

4.4 Component based software system testing
with TCEM
A lot of isolated and individual testing is always

carried out, as such we see it as more efficient if these
testing results can be accessed and reused in TCEM.
We can reuse the testing results based on trust models.
Every TCEM component is to be accompanied with a
document folder which contains complete
documentations about that component, including
security certificates and digital signatures of the
component. Users have an option whether or not to
trust the security and testing issues/results concerning
any component based on the signature‘s signer.
Testing duplication is not efficient. Therefore if there
is a strong component authority who has established a
trust model, other developers can save a lot of time and
effort on testing by accepting the component and the
test results. We have used the Public Key
Infrastructure [12] to help us with trust issues.

According to the TCEM methodology each
component should have its own certificate. The use of
the certificate can help us identify and manage

software components and solve some of the security
issues of the software components. The component
certificate has four elements, i.e. the “General”,
“Taxonomies”, “TestCases” and “Securities” elements,
as shown in figure 2.

Figure 2 Component certificate’s structure

The structure of a Component certificate is shown

in Figure 2 above. The “General” element contains the
identification of the author of the component and the
description of the functions that the particular
component provides. The “Taxonomies” element
contains the taxonomy methodologies and the detailed
descriptions of the component. Users can perform
search functions by reading and understanding the
component certificates. The “TestCases” element
contains information about the person who had
performed the tests, the specifications of the test cases
as well as the results obtained from the tests. The
“Securities” element contains the information of who
has checked the particular component, the digital
signature of the component and the issuer’s public key.

Figure 3 LoginForm_Component_Certificate’s

General section
Figure 3 above shows the general part of the

LoginForm_Component_Certificate. It gives the name
of the author, component name and also the
comment/documentation about each function.

Figure 4 below illustrates the Taxonomy part of the
LoginForm_Component_Certificate. It shows the
classification of the component which is important for
performing component selection dynamically.

Figure 4 LoginForm_Component_Certificate’s

Taxonomy section

Figure 5 XML snippet from the

LoginForm_Component_Certificate’s Security
section

The security part of a component certificate

emphasizes the signer’s details as regards the
certificate. In figure 5 above, it can be seen that the
security part is composed of four elements, i.e. the
signature, issuer, issue date, and issuer’s public key.
The signature generated is based on the software
component’s code. If anyone tries to modify the code of
a software component the signature will become
invalid. The component’s public key can be obtained
from the signer. We have constructed a forum for the
use of proof of concept purposes to allow signers to
publish their public keys.

4.5 Component based software system
maintenance with TCEM
Once the software system is developed, tested to

the client’s satisfaction and delivered there is a
likelihood that it will need to be updated or maintained
e.g. for debugging or functional enhancement. During
the maintenance phase of TCEM, developers can reuse
existing software components from our TCET’s local
repository and/or web-repository to maintain the
software system. Developers are also able to reverse

engineer the software back to the CBSS’s design
diagrams and further get back to the use case diagrams
using the TCET tool.

4.6 Total Component delivery (TC- delivery)
It is vital in TCEM to also deliver the software

component(s) after been completion. While some
CBSD methodologies have not taken delivery of
components into account, TCEM considers this to be of
real importance. We have created a robust online
platform that can be used to deliver the software
component to the users who need the component. This
assists in the Software component’s reusability.
However, the Software components security issues and
communications between software component’s
developers and users are also important so that only
trust-worthy and secure components are used. In TCEM
we proposed the use of Component Certificate to
handle the security issues. Complementing the multi
taxonomy system in TCEM, this certificate can also
assists during the component delivery phase since other
developers of the software system can search for
software components more accurately and efficiently.
The delivery of the software systems comes also with
full documentation and information about the software
components used and their interrelationships so that
subsequent maintenance, refactoring and code reuse
will be easier and more efficient.

5. Total Component Engineering Tool

(TCET)
The Total Component Engineering Tool (TCET)

is a prototype application that is designed and
implemented to support the TCEM methodologies
requirements and techniques that we discussed in the
previous sections. In this section we will discuss the
designs of software structures, software components,
precise functionalities and the user interfaces that can
be visualised and supported by the TCET tool to
complement our development methodology. We will
also discuss the UML notational extensions that we
created.

5.1 UML Extensions to support the TCEM
methodology

Our Extended UML included early component use
case diagrams, enhanced class diagrams, import-list
diagrams, method diagrams and extended component
diagrams.

5.1.1 Early Component Use Case diagram. As
regards the Use Case diagrams for a software system,

the TCET tool supports identifying the components,
called Early Components (or EC), of the software
system during this initial phase of development. TCET
provides an option to allow users to choose and store
useful prefabricated software components or rapidly
construct a prototype of a component that have not yet
been fully implemented. This function of identifying
and using Early Components can aid users to
accumulate and consider of the use of software
components even during the initial development stages
so that they have more control during the rest of the
SDLC phases and can rapidly and efficiently develop
component based software through greater component
reuse. No existing software development tool or
methodology can handle Early Components.

Figure 6 Visually enhanced Use Case diagrams in

TCET

An example of a visually enhanced Use Case
diagram is shown in Figure 6 above. Here it shows a
component (called the initialization_component) that
controls a system’s startup and shutdown processes.
The tool clearly captures the use cases and depicts that
the initialization_component provides functions for the
two use-cases’ requirements. The tool also allows
users to have options to choose their own type of
visual notation for the actors so that developers can
depict the actors in their own style. In this case the
operator (actor) is better visualized in an enhanced
cartoon format rather than with mere stick figures.
More detailed information can be stored in pop-up
frames for each and every component, use case or
actor.

5.1.2 Enhanced Class Diagram. The class diagram
shown below in figure 7 may look similar to the
traditional UML class diagram. However there are
many useful enhancements, for instance, there is one
extra column that contains full information about the
packages or other components a particular class uses.
This column is called the “Import information panel”
and can be used for importing information. The other
panels for Class name, Variable panel and Method
panel are used exactly as the name implies. Also any
detailed instructions or code snippets can be stored in
pop-up frames for each enhanced class diagram.

Figure 7 Enhanced class diagram drawn in TCET

5.1.3 Enhanced Method Diagram

Figure 8 Enhanced Method diagram

The Enhanced Method diagram shown in figure 8
above is not one of the traditional UML diagrams. It
also contains all the high level information about how
it is to be implemented. The diagram consist of three
parts, i.e. the top part is for the method’s name, the left
hand part is the “Output panel” that shows the types of
value(s) that are returned by the method, and the right
part is the “Input panel” that store the method’s input.
All detailed information, instructions or code snippets
are again easily stored in pop-up frames for each
method.

5.1.4 ImportList diagrams The visual notation of an
ImportList diagram is shown in figure 9 below. It is
not of a traditional UML type but our own extended
version of our modeling language to support TCEM.
Whenever there is a new connection with a new class
diagram the information in the “Import information
panel” from the importList diagram will be copied to
the new class diagram’s “Import information panel”.

Figure 9 The ImportList diagram

The ImportList diagram has a direct connection to
our enhanced class diagram. An importList diagram as
such shows a class’s or component’s import details and
relationships with other entities or components.

5.1.5 Component diagram. An example of a
Component diagram in TCET is shown in figure 10
below. It consists of the component’s name as its
topmost tag and there are three very important parts
within the diagram. On the left hand side is the
Component’s Function panel, the middle part is called
the Component’s Implementation details panel and the
right hand side portion is the helping area for assisting
with implementation. We can also store all detailed
instructions, information, inter-relationship diagrams
or code snippets in pop-up frames. This diagram
comprehensively captures all the information about a
component and its inter-relationships with other
components and objects in the software system.

Figure 10 Component diagram in TCET

6. Aspect-Oriented and TCEM

AOSD is an approach that can be used to handle
the cross cutting concerns and code interleaving issues
involving aspects in software system [13]. We have to
be able to address these cross-cutting issues if we are
to have very robust systems. To achieve this in our
methodology we have shown that we can also
incorporate the techniques of AOSD into TCEM. We
developed an On-line Banking prototype to illustrate
that TCEM is able to integrate with other software
development approaches. This is also to show that
TCEM is very useful and flexible enough to be used to
address other current issues like aspects in software
development.

Figure 11 below shows the Total Components
(TC) Use Case diagram for an online banking system.
It depicts and defines the software components that
will be used to satisfy the requirements based on the

use cases. As can be seen in Figure 11 (on the right),
there are nine Early Components that have been
identified.

Figure 11 TC-Use case Diagram of an online

banking system

Figure 12 Total Component (TC) design diagram of
the online banking system

Figure 12 above shows the TC design diagram
that was generated in the TCET tool with the use of the
TCEM methodology. The central component is the
main component and the surrounding diagrams are
component sets. In this example, we incorporated
aspect-oriented software development techniques into
TCEM. Each component set in this diagram belongs to
an aspect type. We have therefore classified the
software component’s functions into different aspects.
The collapsed diagrams (small colored boxes) are the
actual software components. The functions in the

component sets are from the backend software
components’ logic. However, each component set may
also introduce more business logic to increase its
functionalities.

Figure 13 Example of a Component Set and its
related components

Figure 13 above shows the Persistency_ComponentSet
more clearly (shown circled red in figure 12) and its
related components. All methods provided by the
Persistency_ComponentSet are called from the
components. We have demonstrated the efficient and
effective use of TCET and TCEM through designing
and developing an online banking prototype example
in our research. We also discovered that the structure
of the software system is clear, clean and can support
plug-and-play features.

7. Evaluation

To show the usefulness and practical application
of the TCEM methodology and TCET tool, we carried
out an independent evaluation that was approved by
the Ethics Committee of The University of Auckland.
This evaluation was carried out by eight experienced
software developers randomly selected who
volunteered to do the evaluation. They were first given
an explanation about the methodology and a demo on
how to use the TCET tool. They were then asked to
use the methodology and tool to develop a sub-system
of a reasonably complex system. The rating given by
the participants for the usefulness of the TCEM
methodology is shown in the Pie Chart in Figure 14
below. (Rating 0 is lowest or least usable and 5 is the
highest). 37.5% were of the opinion that is useful
(rating level 4) while 62.5% thought that it is
extremely useful (rating level 5).

Rating of TCEM
5 (Highest, extremely
usable)

4

3

2

1

0(Lowest, lest usable)

Figure 14 Usability ratings of TCEM

From the evaluation of TCEM, it can be seen that
the TCEM methodology is indeed a useful and good
way to create component based software systems as
most of the users who evaluated it gave very good
ratings due to its comprehensiveness and flexibility.

Usabiltity of TCET and its visual notation

0
1
2
3
4
5
6
7
8
9

Yes No

Would you like to use the
notations if you had a complex
software project to do?

Is it easy to develop CBSS
with the tool?

Figure 15 Usability of TCET and its visual
notations

Figure 15 shows the results from the human participant
usability evaluation on the TCET tool and the extended
UML notations. As to the question on how easy it is to
develop CBSS with the TCET tool, all the participants
agreed that it is easy to use the tool as it is quite user-
friendly and built on extending the UML language.
The participants also all agreed that they would like to
use the notations if they had complex software projects
to work on because of the extensive notational support
and Early Component identification and reuse.

This human participation evaluation has shown
very promising and positive results as regards the use
of the TCET tool and TCEM methodology. Based on
the evaluations and comparisons with existing
technology, we belief that the tool and the
methodology is very useful and can be used to
efficiently develop better quality Component Based
Software Systems more rapidly and with greater
control over the development processes involved.

8. Conclusions

We have successfully formulated a new
Component based software development methodology
called the Total Component engineering Methodology
or TCEM. TCEM supports the development of
component based software system starting from the
early stages using Early Components right through all
the development phases making it more efficient,
effective and comprehensive when compared to the
existing CBSD methodologies.
We have also successfully designed and developed a
novel tool called the Total Component Engineering
tool or TCET. The TCET tool fully supports and
complements TCEM in developing comprehensive
software systems and can also address other issues e.g.
the problem of cross-cutting issues called aspects in
software components and systems. The software
developed using TCEM and TCET is more
understandable, manageable, reusable and scalable and
the development process is also more controllable,
efficient, effective and comprehensive. Our next step
is to use our research ideas, methodology and tool in
other research labs and subsequently apply them in
industry to increase productivity and develop efficient
componentized software applications and systems.

9. Acknowledgements

We wish to thank the Ethics Committee of the
University of Auckland for approving the human
participant evaluation of our research ideas and the
participants who volunteered to independently carry
out the evaluation of our new methodology and tool.

10. References

[1] A. Bertolino and R. Mirandola, "Towards Component-
Based Software Performance Engineering," presented at 6th
ICSE Workshop on Component-Based 2003

[2] P. Gilda, "Component-Based Software Development:
New Challenges and Opportunities," presented at
Technology of Object-Oriented Languages and Systems,
Santa Barbara, CA, 1998.

[3] S. D. Lee, Y. J. Yang, F. S. Cho, S. D. Kim, and S. Y.
Rhew, "COMO: a UML-based component development
methodology," presented at APSEC 1999.

[4] D. F. D'Souza and A. C. Wills, Objects, Components, and
Frameworks with UML : The Catalysis Approach: Addison-
Wesley Professional, 1998.

[5] S. Jalili, S. Malakuti, and K. O. Abadi, "AECM: an
Aspect Enabled Component Model," presented at APSEC
2005.

[6] M. Matinlassi, "Comparison of Software Product Line
Architecture Design Methods: COPA, FAST, FORM, KobrA
and QADA," presented at ICSE, 2004.

[7] N. C. Shu, "A visual programming language designed for
automatic programming," presented at Twenty-First Annual
Hawaii International Conference, Hawaii, 1988.

[8] R. Sessions, COM and DCOM: Microsoft's Vision for
Distributed Objects John Wiley & Sons, 1997.

[9] N. Kassem, Designing Enterprise Application with the
Java 2 Platform (Enterprise Edition): Addison-Wesley
Professional, 2000.

[10] O. M. Group, "CORBA Components," vol. 2006: OMG,
1999.

[11] G. Pour, "Moving toward component-based software
development approach," presented at Technology of Object-
Oriented Languages, Santa Barbara, CA, 1998.

[12] A. Nash, W. Duane, C. Joseph, and D. Brink, PKI
Implementing and Managing E-Security: RSA Press, 2001.

[13] J. Grundy, "Aspect-oriented requirements engineering
for component-based software systems," In Proceedings of
the 4th IEEE International Symposium on Requirements
Engineering. IEEE Computer Society Press (1999): 84--91.

[14] T. Wanyama and B. H. Far, "Towards providing
decision support for COTS selection," presented at Electrical
and Computer Engineering 2005

[15] L. C. Briand, "COTS Evaluation and Selection,"
presented at International Conference on Software
Maintenance, 1998.

[16] G. Pour, M. Griss, and J. Favaro, "Making the
Transition to Component-Based Enterprise Software
Development: Overcoming the Obstacles - Patterns for
Success," presented at Technology of Object-Oriented
Languages and Systems TOOLS, 1999.

[17] R.S. Moreira, G.S. Blair, and E. Carrapatoso, “A
Reflective Component-Based and Architecture Aware
Framework to Manage Architecture Composition,” Proc. of
3rd Int’l Symp. On Distributed Objects and Applications
(DOA 2001), 2001, pp. 187- 196.

	1. Introduction
	2. Motivation
	3. Background
	4. Total Component Engineering Methodology (TCEM)
	System’s Requirement Engineering with TCEM
	Analysis and Design using TCEM
	Component based software system implementation with TCEM
	Component based software system testing with TCEM
	Component based software system maintenance with TCEM
	Total Component delivery (TC- delivery)

	Total Component Engineering Tool (TCET)
	5.1 UML Extensions to support the TCEM methodology

	6. Aspect-Oriented and TCEM
	7. Evaluation
	8. Conclusions
	9. Acknowledgements
	10. References

